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ABSTRACT 

A model of equispaced-level in the conduction band of semiconductor quantum well (QW) nanostructures is applied 

to two ternary alloys - GaxIn1-xP and GaxP1-xAs with achievable results. The model addresses the case of confining 

potential that may be realized by appropriate grading of the semiconductor alloy and the case of non-confining 

potential where the electron effective-mass tends to zero as z tends to infinity [m ( ) ]. This latter case is 

not realizable. 

 

1.0  Introduction 

The nano-structuring of semiconductor  materials  

was first introduced by Shockley (1951) and later by 

Kroemer (1957). QW and nanostructures generally 

are broadly tailorable, that is, there is the possibility 

of implementing a design such that the quantized 

states and the corresponding wave functions respond 

to the design (Nenad, 2007; Nurmikkor and Gunshor, 

1994).  

   This paper is organized as follows. In section 2, we 

present the theoretical background.  Section 3- 

analytical solution procidure, section 4- results and 

discussion. And a brief conclusion is given in section 

5. 

       Controlled confinement of electrons in one 

dimension in semiconductor heterostructures such 

that a well with width of the order of the de Broglie 

wave length of electron between barriers is formed, 

constitutes a QW. An electron in this well displays 

quantum phenomena (Dingle et al, 1974; Basu, 1997; 

Marquezimi et al, 1996). 

The focus in this article is on presenting the 

calculated effective mass function m(z), potential 

function V(z) and the electron wave function Ui(z), 

for two ternary alloy QWs (Milanovic and Ikonic, 

1996; Milanovic et al, 1996; Ejere and Idiodi, 2011).   

2.0  Theoretical  background 

The governing equation of equispaced-level in the 

conduction band of a semiconductor Quantum well 

nanostructure is the 1-D time-independent 

Schrodinger equation given by: 
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We seek the function  
 zm

 and therefore 
 zV

 

such that the energy spectrum of Eq. (1) has 

equidistant states same as 1-D Harmonic Oscillator 

(1-DHO) (Powell and Crasemann, 1962; Milanovic 

and Ikonic, 1996; Yariv, 1988;  Einevoll     et al, 

1990; Renan et al, 2000;  Paul, 2005). 

For convenience let us express  

Energy in eV units, 

Length in 

o

A units, and 

Effective mass in free electron mass units, then 

Eq.(1) becomes 
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3.0 Analytical solution procedure 

The interest is in introducing a new coordinate by 

putting 
 ygz

  into Eq.(1) and introducing a new 

function u(y) (Eugene, 1970 and Abramowitz and 

Stegun, 1972): 
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Eq.(2)  becomes, 

      02

2

2

 ummEgqmyA
dy

ud
BC

 
                       (3) 

where, 
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The potential V  for denoting 1-DHO equispaced 

level is given by 

oLHO Vy
E

mV 






 
 2

2

2

1

    
            (5) 

Substituting for V in the schrodinger equation  
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Equations (2) and (6)  must coincide and equations 

(3) and (6) must also coincide. Solving to give 
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The equations  (7) and (8)  gives the ideal of a 

physically realizable QW structure. The deviation of 

the real structure from the idealized one  is due to the 

accumulation of electrons in the lower gap material 

side at the two heterointerfaces, which lead to band 

bending at the interfaces (Das Sarma et al, 1990; 

Alicia and David, 1990). This deviation will perturb 

energies of state below the barrier top, which remain 

bounded, while those above would dissolve into 

continuum. Yet only those which are close to the 

barrier top (Lee et al, 1996) will be seriously affected 

by truncation therefore the influence of truncation is 

negligible for all practical purposes (Milanovic and 

Ikonic, 1989; Paul, 2005; Reeno et al., 2007; James et 

al, 2010; Arthur, 2011). 

The wave function corresponding to eigenstates  is 

given by 

     tUEmq
i

t iii
4

1
2

1

2!

1











  
           (9) 

The eigenfunctions 
)(tU

 are the well-known 

Hermite functions.  
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Substituting values for 
 sHi  (Powell and 

Crasemann, 1962;  Russel, 1998),  into Eq.(11) gives 
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4.0 Results and Discussion 

   The variation of the effective mass and the potential 

functions, required to obtain equispaced levels with 

 E= 30meV are obtained.  It enable for instance, a 

cascade of electron transitions with absorption or 

emission of photons (Qi and Qi, 1999). 

 

Table 2.1: some semiconducting properties of selected ternary alloys (David, 1991) 

 Semiconductor Alloy system 

(Ternary Alloy)  

Ax B1-x C 

Electron Effective Mass (M0) and 

Minimum band Gap (eV) 

Band off Set 

(meV) 

MBC MAC 

1 In P/Ga P (Gax In1-x P) In P 

0.077 m0 

1.27 eV 

Ga P 

0.35 m0 

2.24 eV 

 

825meV 

2 Ga Px As1-x Ga As 

0.067 m0 

1.35 Ev 

Ga P 

0.35 

2.24 eV 

 

770meV 

 

The values of the Electron effective masses and the 

minimum band gaps are obtained from David,  

 

(1991), while the band off-set (the last column of 

Table1) are calculated. See Ejere and Idiodi, 2011 

and  Milanovic and Ikonic, 1989. 
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                                                     z(A) 

Fig. 1a: The Effective mass m (z), the potential v(z) and the mole fraction x(z) for GaxIn1-xP 

 

 

 

                                                                    z(A) 

Fig. 1b: The normalized wave functions 
 zU i  of the first three bound state with 0  GaxIn1-xP 
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                                                       z(A) 

      Fig. 1c: The Effective mass m (z) and the potential V(z) for GaxIn1-xP  

 

 

                                                          z(A) 

 

Fig. 2a: The Effective mass m (z), the potential v(z) and the mole fraction x(z) for GaxP1-xAs 
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                                                                  z(A) 

Fig. 2b: The normalized wave functions 
 zUi

 of the first three bound state with 0  GaxP1-xAs 

 

 

                                                    z(A) 

 Fig.2c: The Effective mass m (z) and the potential v(z)  for GaxP1-xAs 
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 Figures 1a to 2c, shows the results for two 

semiconductor ternary alloys One can see that,  

  zm
, also the potential 

  zV
.  

  The parabolic shape of the V(z) graph for the seven  

alloys are similar and clearly shows that the 

eigenstates in the QW are equispaced (Ejere and 

Idiodi, 2011). 

  The shape of m(z) graph follows the parabolic shape 

of the V(z) .  

   Classically, confining potential (CP) for all the 

semiconductor alloys are obtained. The potentials are 

confining type and the effective mass follows it. In 

effect, just as the electron tends to avoid regions 

where its potential exceeds the total energy, it also 

avoid regions where the kinetic energy will be large 

there by exceeding the total energy. 

 

5.0  Conclusion 

In an ideal world, all experiment would be interpreted 

using the results of ab initio solutions of the many 

electrons Schrodinger equation. These results  as 

shown in the figures  shows that equispacd level  

design are achievable with these alloys . 
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